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The methods of Solving problems of stability of motion of a liquid- 

filled gyrostat with one point fixed 111, can be extended to free gyro- 

stats moving in a Newtonian force field 121. 

We consider here the problem of a gyrostat consisting of the rigid 

body TI and the rotors T2, whose axes are fixed in T,. The friction in 

the rotor axes and other dissipative effects are neglected. The general 

theory and Liapunov’s criterion of stability of motion for gyrostats 

with one point fixed have been thoroughly investigated in the past, for 

example in [d. In our work we have obtained sufficient conditions of 

stability for one particular solution of the equations of motion of a 

free gyrostat in the Newtonian force field. 

1. Let 0 be the origin of a fixed Cartesian coordinate system, <. tl 

and 5 coinciding with the center of attraction. The gyrostat moves in 

a Newtonian central gravitational field, and the axes of the moving co- 

ordinate system x, y and z coincide with the principal central axes of 

inertia of the gyrostat. 

Let A, B and C be the principal central moments of inertia of the 

gyrostat and let M be its mass. 

Our mechanical system, consisting of the solid casing T, and the 

symmetric rotors TI1, will be denoted by the single letter T. 

The angular momentum of the system T with respect to 6 equals 

Ko=RxMV+K (R2=52+qa+P, v+)"+($)"+(g) 

Here R is the radius vector of the center of mass of the whole system, 
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V is its velocity and K is the angular momentum of the gyrostat with 
respect to the KiSnig axes (axes through the center of gravity). From 
the conditions of the problem it is clearly seen that the theorem of 
K&rig on the angular momentum is here applicable. Thus 

K = K, + Kz 

where IT is the angular momentum of the whole system considered as a 
single body, and K2 is the angular moments of the relative motions of 

T2. 

If the components of the vector of instantaneous angular velocity o 
of the body T, along the moving axes are p, q and r, then the components 
of the vector IT along these axes will be 

AP, Bg, Cr I xl yIz 

E al a3 a3 

Let the x, y and z projections of K2 be k,, kz 9 Pl Pa P3 

and k2, respectively. i ! I 5 -rl Ta 73 

Let fl, -r2 and v3 be the direction Eosines of 
R in the system x, y and L. and let the direction cosines between the 
axes <, q and 5 and X, y and z be given by the table on the right. 

By Kbnig’s theorem the equations of motion of the system are 

dp dkl 
A dt + dt + (c - B) q’ + qks - rka = L, (P 41 r. 1. 2. 3, ABC. xvz) (1.3) 

Here the symbols in parentheses indicate that the remaining two equa- 
tions in (1.1) and (1.2) are obtained by cyclic permutation of the indi- 
cated letters; LX, Ly and Lx are the moments of the Newtonian forces 
acting on the system T about the axes indicated by subscripts. 

In real mechanical systems the ratio of a characteristic dimension 
to R is of the order of lo-” to 10W6: consequently, the Newtonian 
potential or the force function U can be written as f3f 

Now 

(1.3) 

L, = 3 (C - B) ~~21 Lv=$(A - C) Zl%St L, = $a {B - A) ZBZI (W 

It is easy to see that 
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(1.5) 

and II depends on all the direction cosines ai, Pi, Yi (i = 1. 2, 3). 

The components LX, L,, and Lz of the vector of the gravitational moment 

acting on the system T are expressed either as functions of TV, v2 and 

730 or of ai, pi, yi (i = 1, 2, 3) by the known formulas [41, or 

directly by using (1.4) or (1.5). The system of equations (1.1) and 

(1.2) should be supplemented by the kinematic equations of Poisson for 

the direction cosines and by the equations of the relative motion of the 

bodies T,. In our case the equations of the relative motion should have 

the form of equations of motion of a rigid body with a fixed axis. 

2. We shall investigate the special case of the motion of a free sym- 

metric gyrostat 

A = C, kl = ka =o, k-a = k (t) (2.1) 

where k(t) is a bounded continuous function of time. 

With the above, formula (1.3) becomes 

and the equations of motion become 

(2.2) 

(2.3) 

dp 
A dj + tA -B) qr- rk(t) =$(A - B) ‘TS’t2 

dq dk 0) 
B~+dt=o 

dr 
Ax+ (B - A) pq + pk (t) = 8 (B - A) ‘~2~1 

Here k(t) is assumed to be a known function of time and hence our 

system can be regarded as closed if we add to it also the equation of 

Poisson for the direction Cosines. The equations of motion of a free 

gyrostat of the considered type in a Newtonian force field with the 

potential (2.2) and under conditions (2.1) can yield several first inte- 

grals. 
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From the second equation (2.4) the following integral is obtained 

Bg + k (t) = H = ,const (2.51 

Let us multiply equations (2.3) in turn by $/dt, 4/dt and dl;/dt 

and equations (2.4) by p, q and r; then let us add them and integrate 
the sum. Taking into account (1.5) and the kinematic equations of 
Poisson for ai, pi. yi (i = 1, 2, 3), we obtain the energy integral 
(vis vivae) 

+A(p*+ld)-2U=cOnSt (2.6) 

where U is given by (2.2) 

Another first integral can be easily obtained by projecting the 
vector of angular momentum of T with respect to 0 on the c-axis, which, 
without any loss of generality, can be assumed to be perpendicular to 
the plane of the orbit. This first integral is 

M(Ed$- r) ;ii d’) + Apr1 -I- (Bq + k (t) Ts + Am3 = COtm (2.7) 

Further, we have the trivial relationships 

22 + Q4’ + Zag = 1, +flS -I- r? -I- rs* = 1 (2.6) 

By introducing spherical coordinates whose center coincides with the 
center of mass of the system and by taking into account (2.5). the inte- 
grals (2.6) and (2.7) will take the following form: 

MRB co2 9 2 + A (m + qys) + HAS = const (2.9) 

3. The equations of inotion (2.3) and (2.4) together with the kine- 
matic equations of Poisson admit the following particular solution: 

p=r=O, q --B-l (H - k (t)) 

7.1 = 73 = 0, r-L= 1; R = R,, dR/dt=Q (3.1) 

9 = 0, 
T$ = 0, 

The motion of 
of the motion of 
R, with constant 

d$ldt==O, rp=ot+cp,, drp/dt=o=const 

71 = sin Q (L) 78 = cos a (t), dQ / dl = o - q (t) 

a gyrostat corresponding to the above solution consists 
the center of mass on the circular orbit with radius 
angular velocity 0, and the rotation of the gyrostat 
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about its axis of symmetry (remaining perpendicular to the plane of the 

orbit) with angular velocity q, while the rotor performs the prescribed 

mot ion, such that Bq + k(t) = H = const. Our problem consists of in- 

vestigating the Liapunov stability of the described non-perturbed motion 

with respect to the group of variables 

PI r, H, 22, ~1, 72, ~3, R, dR / dt, $3 d$ I dt, dg, I dt (3.2) 

4. Let 

P, r, H -I- I, ~2, ~1, ~a, n = 1 -+ x2, R = Ro f x3 

denote the variables which we shall investigate in the perturbed motion. 

The equations of motion of a one rotor gyrostat in a Newtonian force 

field under conditions (2.1) permit the integrals 

V~ = MRo”(t;B + Mh2 - MRfo%j+ + 2MRoo 2 + 

+ 2w + 6(B;4A)P)~3+(Ma2-$_ - 6@&~)p)d+ 
RQ2 

+ 4MRm x&4 + MRo%~~ + 2MR& + ” (;; A) 22’ + A (P2+r”) +‘J (3) = co& 

V2 = MR? a?4 + 2MRoo xs -I- 2MRox& + MO x? - MRo%$~ -I- A (prl i- m) + 

+ Hxa + x1 + x1x2 + o (3) = const 

Va = x1 = con&, V4 = Tl* + rs2 + xza + 2x2 

Here o (3) denotes all terms of the third order and higher with re- 

spect to the perturbations. The stability of the considered non-per- 

turbed motion will be investigated by the direct method of Liapunov. 

The investigation is performed by examining the function of the vari- 

ables (3.2) constructed by Chetaev’s method [51 which is in the form of 

the combined first integrals of the equations of motion 

w = V’l - 20 (V2 - Vs) + HwV4 + l.1V22 + W32 = MRo”@ + Mi32 + MRo=o Igr + 

+ ( MR02 + hl MZRo4) 42 + 4hlM2Ri,~ox&4 + 4 hl M2R02~ 2 -3 MO 2- 
( 

+ 
3 (R-A) p z22 +Ap2 

RoS 
- 2oAp~1 $ Hurl2 + AP - hArTa + 

+ Hors2 + (- 20 + 2HliJ ~1x2 + (Ho + klH2) x22 i- klq2 + bi12 + 

+ 2hlMRe2H x&4 + 2h1MRo~qh + 4&MRoHmzzs + 4&MRoo ~1x3 (4.1) 
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In this quadratic form A, and h, are constants. According to 

Sylvester’s criterion the necessary and sufficient condition for the 

quadratic form W to be positive-definite is 

B>A, H>Ao (4.2) 

and also the positiveness of all principal diagonal minors of the deter- 

minant of the quadratic form 

II ‘ij II (‘ij = ‘ji) (i, j = 1, 2, 3, 4) 

Cl1 = ~lMRo40 a - 3M& - 3 ‘BR;5 A) p ; cla = 2hlMaRoSo 

~13 = 2h1 MRoHo, cl4 = BhlMRoa, c22 = MRo2 + hlM-=Ro4 

cza = hlMRoa H, t&4 = X1MRo2, caz = Ho + h# 

~34 = -a + IIH, c44 = hl + hs 

The last requirement can be satisfied by suitable selection of the 

constants h I and A, under the condition H < MRu2,/3, which in practical 

cases is usually satisfied. 

Consequently, when the condition (4.2) is satisfied and the constants 

A, and h, are suitably selected, the quadratic form (4.1) will be 

positive-definite with respect to all the variables, and it can serve in 

our case as the Liapunov function, since dW/dt = 0 on the strength of 

the equations of the perturbed motion. 

By Liapunov’s theorem, then, the non-perturbed motion of a gyrostat 

with one rotor, whose angular momentum satisfies the condition 

Bq + k (t) --Aa > 0 

is stable. 

The inequality obtained shows that a gyrostat of the considered type 

rotates in its orbit as if it were a single body with its principal 

moment of inertia changed to H/o. satisfying also the inequality H/o>A. 
When k(t) = 0 and p = o we are left with the only condition B > A. 
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